Safety benefit of employing alternative standards for winter road maintenance

Sixth Meeting of the Ontario Road Safety Forum. October 17, 2019

Yizhou (Joe) Cai, MASc Student

Presented by: Taimur Usman

iTSS Lab, Department of Civil and Environmental Engineering University of Waterloo

OUTLINE

- Introduction
- Methodology
- Comparative Analysis
- Models developed and Employed
- Conclusions

Winter Road Safety

- Poor weather
- Different road driving conditions
- Increase in collision frequency
- Increase in collision related cost

An Accident occurred on Icy road

Winter Road Maintenance

- Improve safety and mobility
- Cost
 - \$ 1 billion/year in Canada
 - Environmental effect

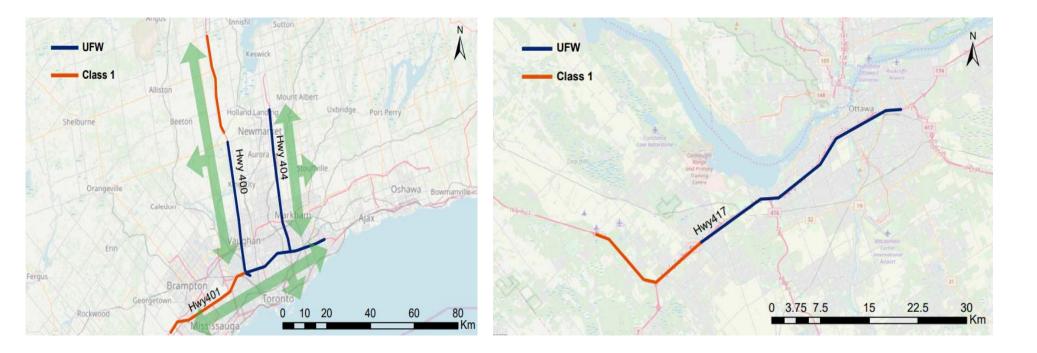
Highway Classification and Level of Service Standards

Highway Class	WADT	Circuit time (hrs)	BPRT (hrs)	
Urban Freeway	>100,000)	1.3	4	
Class 1	>10,000	1.3	8	
Class 2	2001-10,000 (1,501-10,000*)	1.8	16	
Class 3	1001-2000 (801-15,00*)	2.9	24	
Class 4	501-1000 (401-800*)	4.9	24	
Class 5	<500 (< 400*)	8	24	

First salt application rate up to 200 Kg/2Ln-Km from 130 Kg/2Ln-Km

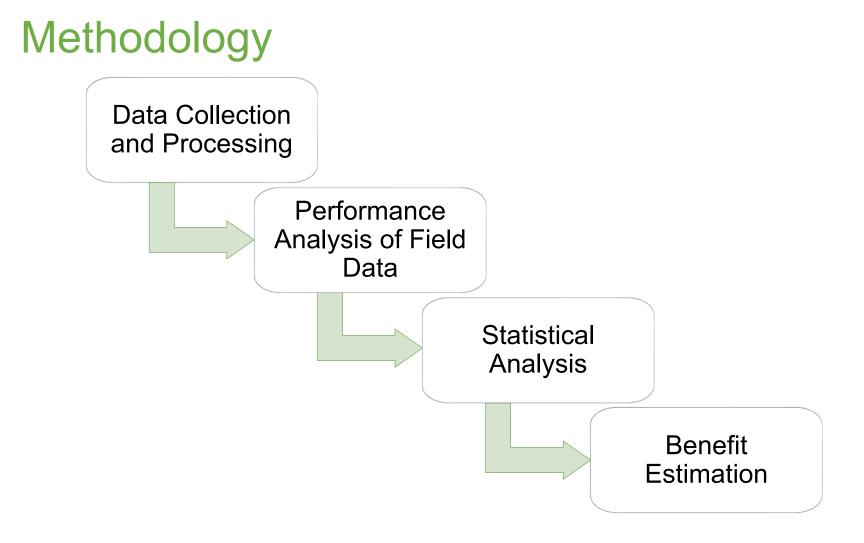
Deployment time 20min from 30 min

Shoulder Plowing

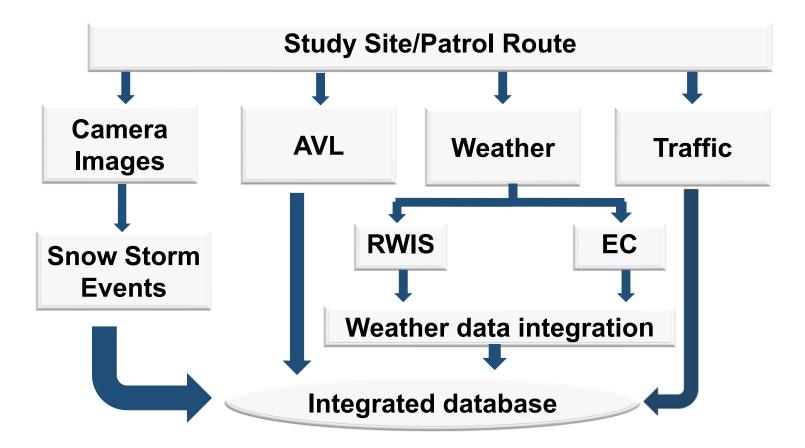

Dedicated Spreaders

*Northern Ontario

Research Question and Objective


- Do the safety benefit resulting from the new changes justify their introduction?
- Assess the resource implication and performance outcome (safety benefit) of the proposed changes

Study sites for UFW Field Trails



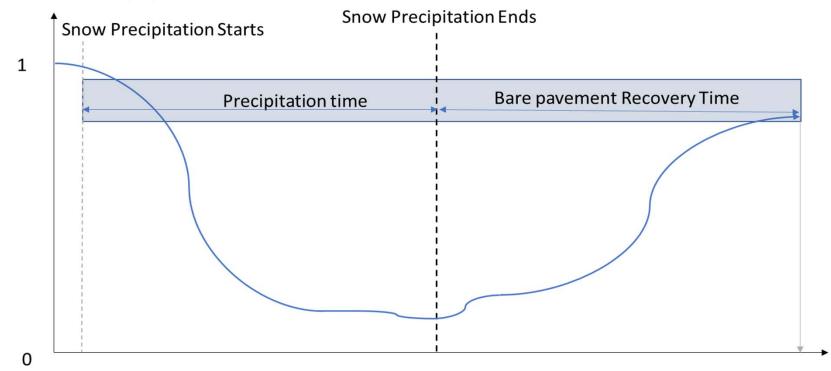
(a) Study sites in the Central region

(b) Study sites in the Eastern region

Data Collection and Processing

Image data

Camera Image

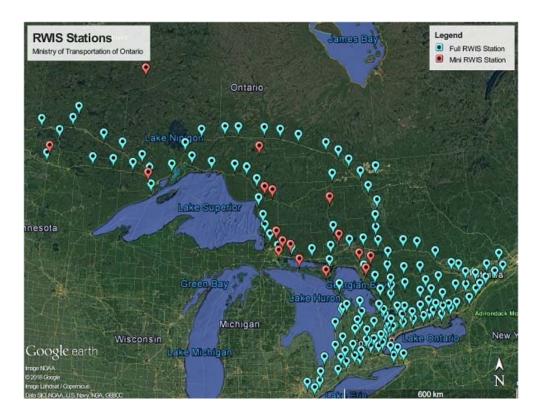

Traffic Camera

Road Surface Condition

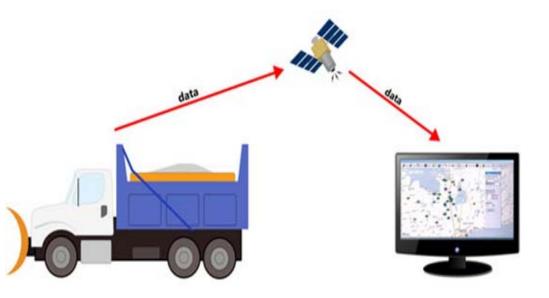
Road Surface Condition	Road Surface Index (RSI)	% snow coverage		
Bare and Dry	0.95	0% - 5%		
Bare and Wet	0.85 5% - 10%			
Slushy	0.75	10% - 25%		
Partly Snow Covered	0.6	25% - 70%		
Snow Covered	0.4	70%-100%		
Snow Packed	0.25	NA		
lcy	0.125	NA		

Snow Storm Event

Road Surface Index (RSI)



12

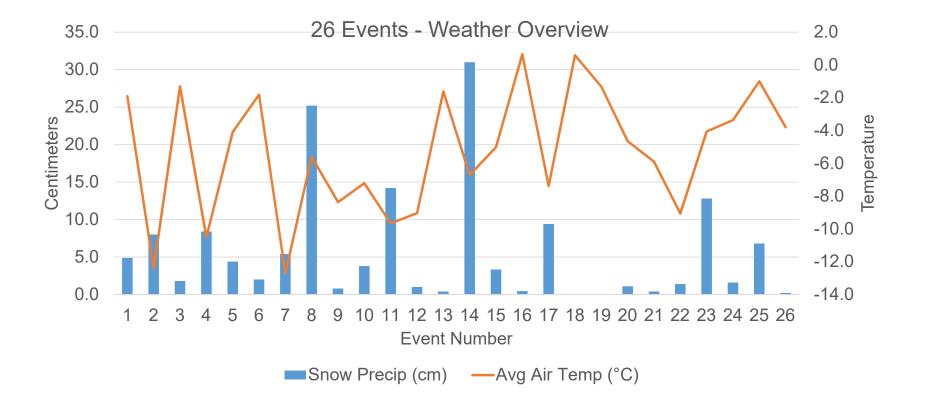

Weather Data

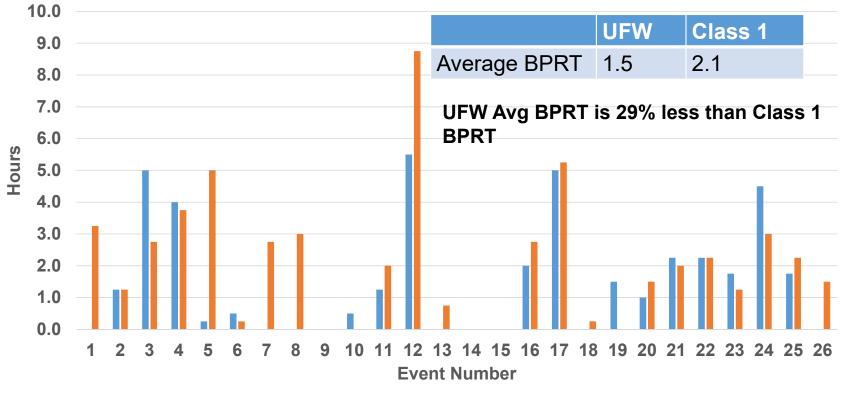
- Air temperature (°C)
- Relative humidity (%)
- Wind speed (km/hr)
- Visibility (km)
- Wind chill (°C)
- Precipitation intensity (cm/hr)

Automatic Vehicle Location (AVL) Data

- Vehicle GPS location
- Operation timing
- Material type
- Material application rate
- Material usage

Traffic volume Data


 Traffic volume data were collected through loop detectors and obtained from the MTO's permanent data count stations (PDCS)

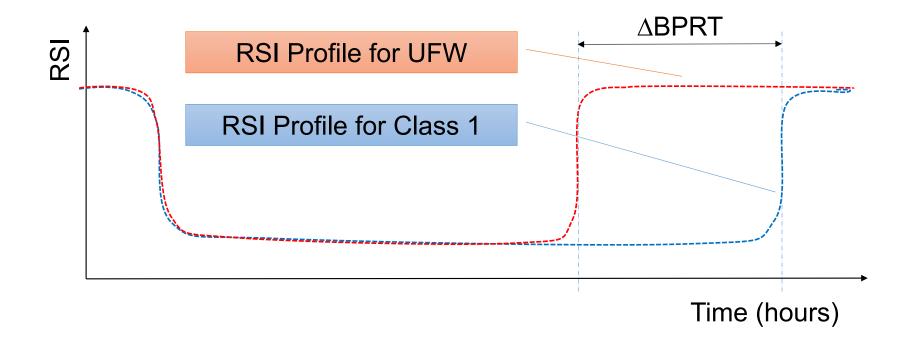

Comparative analysis

- Performance measures
 - Bare pavement regains time (BPRT)
 - Within storm snow coverage
 - Material usage

Study site: Hwy 417 2018-19 season (2018/12/31 to 2019/03/17)

BPRT Comparison

Within storm snow coverage


Material usage

- •UFW = 3647 kg/ln-km
- Class 1 = 2506 kg/ln-km
- UFW Material Usage is 45% more than Class 1

Comparative Analysis Results

Site	Material (Kg/In-km)		BPRT (h)		Within storm Snow coverage	
	UFW	Class 1	UFW	Class 1	UFW	Class 1
Hwy417	3647	2506	1.5	2.1	27%	30%
Hwy401	3682	4736	1.4	2.8	16%	18%
Hwy400	4614	2258	0.5	1.3	15%	14%
Hwy404	5252	2258	0.7	1.3	16%	15%

Safety Benefit Estimation

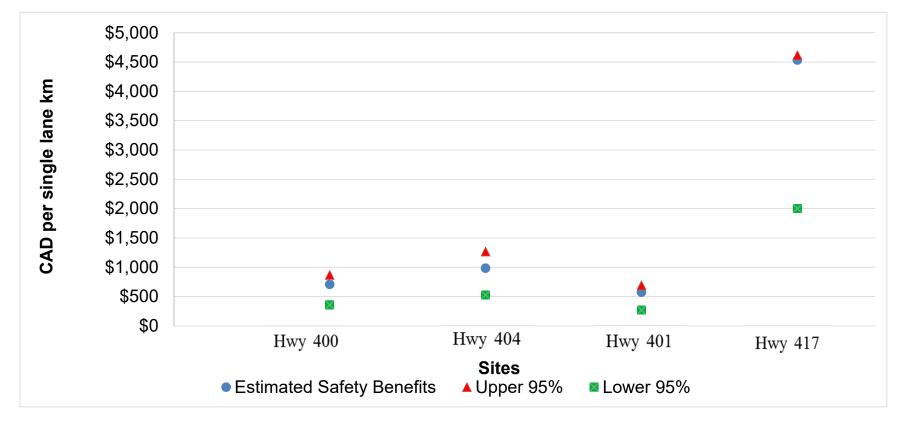
Exploratory Analysis - Correlation Matrix

	∆BPRT	Snow Precip	Event Duration	Temperature	Wind Speed	Visibility
∆BPRT	1					
Snow Precip	0.18	1				
Event Duration	0.29	0.58	1			
Temperature	-0.19	-0.51	-0.39	1		
Wind Speed	-0.05	-0.18	-0.12	0.35	1	
Visibility	-0.12	-0.50	-0.24	0.38	0.39	1

Cross-Categorical Model

		Temperature class			No. of Observations
Event Duration		<-5 °C	-5°C to -2.5°C	>-2.5°C	
Class					
	Avg ∆BPRT(h)	0.00	0.81	0.20	
0-7 hours	Std. Deviation	0.00	0.80	0.31	21
	Observation N	2	9	10	
	Avg ∆BPRT(h)	0.06	1.18	0.81	
7-12 hours	Std. Deviation	0.11	2.25	1.19	20
	Observation N	4	7	9	
	Avg ∆BPRT(h)	1.75	1.42	1.08	
>12 hours	Std. Deviation	1.14	1.89	1.53	22
	Observation N	13	6	3	
No. of Observations		19	22	22	63

Safety Model Used


 $\mu = Exp^{0.235} * e^{-1.249 - 0.011T + 0.005WS - 0.039VIS + 0.097 HP - 2.594RSI + M + S + FH}$ Usman et al. (2010)

- where μ is the expected number of collisions of a highway
- Exp = exposure (equal to total traffic in given time multiplied by length of the road section)
- T = temperature (°C)
- WS = wind speed (Km/h)
- VIS = visibility (Km)
- HP = Hourly precipitation (cm)
- RSI = road surface index (unitless)
- M, S = indicator for month and site (unitless)
- FH = dummy variable for the effects of being the first hour (-0.302 if first hour; 0 otherwise).

Assumptions

- The base scenario is considered with the UFW standard, while the alternative scenario is considered by applying the Class 1 standard.
- Base case RSI for UFW during ∆BPRT period = 0.85 (bare and wet condition)
- Alternative case RSI for Class 1during ∆BPRT period = 0.6 (partly snow-covered condition)
- Unit collision cost = \$77,000.

2018/2019 Season -Safety benefits estimation

Conclusions

- Bare pavement regain time: Implementation of UFW resulted in a significant reduction in BPRT ~ 41%.
- Material usage: Significantly more amount of salt was used on UFW sections compared Class sections for all the sites with an average 139% increase in material usage observed
- Within storm snow coverage: No significant difference was observed for this performance measure.
- Shortened BPRT at UFW sections was found to result in substantial safety benefits. Areas experiencing either more number of storms or more severe storms will observe more safety and mobility benefits associated with maintaining high LOS standards.

Thanks And Questions!