Inferring the Purposes of Using Ride-Hailing Services through Data Fusion of Trip Trajectories, Secondary Travel Surveys, and Land-Use Attributes

UT ITE Seminar February 14, 2020

Sanjana Hossain, M.Sc. Supervisor: Khandker Nurul Habib, PhD, PEng

Outlines

Thesis framework

- Background
- Conceptual framework
- Objectives

Empirical investigation: Ride-hailing trip purpose inference

- Background and research motivation
- Purpose inference methodology
- Data for empirical investigation
- Model estimation and results
- Validation of inferred trip purposes
- Key findings and conclusions

Data fusion for travel demand analysis

Data fusion

- enrich the quality of a sample of travel data by combining it with other data sources
- either to add variables
 or to update the sample

Need for data fusion

Growing methodological issues of HTS

- incomplete sample frames
- low response rates
- under-representation of certain sub-populations
- reporting errors

More detailed data requirements of advanced TDM

- multi-day information
- flexible mobility options (AV, MaaS) affecting

 mobility tool ownership
 vehicle allocation
 - feasible choice sets of modes and locations
 - \circ user values of time
 - parking costs

The data fusion process

IDENTIFY APPROPRIATE DATASETS BASED ON PURPOSE OF FUSION EXAMINE DATA CHARACTERISTICS OF EACH OF THE SOURCES IDENTIFY COMMON (OR SIMILAR) DATA ELEMENTS THAT FACILITATE DATA FUSION ANALYZE AND INTEGRATE DATASETS USING APPROPRIATE FUSION TECHNIQUE

Challenges of fusing travel data

- Data incompatibilities in different contexts
 - Spatial
 - Temporal
 - Semantic: Household vs Individual travel surveys
- Choice of matching variables
- Non-response bias
- Other uncertainties
 - Input uncertainties: Random/systematic measurement uncertainty, Scenario uncertainty on ultimate model forecasts
 - Model uncertainties: Model specification uncertainty, Parameter uncertainty

Objectives of the thesis

- To develop innovative methods for fusing passive data sources with traditional data sources to facilitate the analysis of travel behavior
 - Ride-hailing trajectory data
 - Smart card transaction data
- To investigate the necessity of fusing data from different time periods to account for changing travel patterns due to (i) seasonal variation and (ii) weekday versus weekend variation in data sets

- Applicability of the continuous passive data fused with additional variables

 To develop methods for optimizing the performance of demand models using a combination of data sources Inferring the Purposes of Using Ride-Hailing Services through Data Fusion of Trip Trajectories, Secondary Travel Surveys, and Land-Use Attributes

Background

Ride-hailing services are growing rapidly

- flexibility
- reliability
- cost-effectiveness
- Need to understand the characteristics of these trips and how the services are changing the travel behaviour of people

Source: The Transportation Impacts of Vehicle for Hire Report by the Big Data Innovation Team of the City of Toronto

Research Motivation

- Trip purpose relates to the activities for which ride-hailing is used
 - Thus provides important context of travel demand generated by the services
- GPS trajectory contain when and where passengers move in a high resolution
- But it does not have trip purposes

Trade-off between trajectory and survey data

 Leverage both of the information sources (along with land use data) to infer ride-hailing trip purposes

Previous works on Trip Purpose Inference

Data Fusion Methodology

Enhanced Points of Interest data

Discrete choice models tested (1)

Multinomial logit model

$$-P_{in} = \frac{e^{\mu V_{in}}}{\sum_{J} e^{\mu V_{Jn}}}$$

- Classical maximum likelihood estimation

6

Discrete choice models tested (2)

Discrete choice models tested (3)

- Mixed multinomial logit
 - $U_{in} = V_{in} + \eta_{in} + \varepsilon_{in}$
 - A heteroskedastic MMNL was found to be valid for the estimation data

$$P_{in} = \frac{1}{D} \sum_{d=1}^{D} \frac{e^{\mu \left(\beta X_{in} + \sigma_i \xi_{in}^d\right)}}{\sum_J e^{\mu \left(\beta X_{iJ} + \sigma_J \xi_{Jn}^d\right)}}$$

- Maximum simulated likelihood estimation
- Error simulated using Halton draws

Empirical Analysis for the City of Toronto

- City of Toronto's vehicle for hire bylaw review
- In partnership with UTTRI
- Provided anonymized ride-hailing trajectory data

- Ride-hailing trip records from the City of Toronto for September 2016 – September 2018
 - More than 17 million trips

- Person trip survey data
 - Web-based survey conducted in summer and fall of 2017
 - Collected travel diaries, home and work locations, and socio-demographics
 - Subset of 5,065 trips originating and terminating within Toronto
 - Detailed trip purpose categories

- Enhanced Points of Interest (POI) data from DMTI Spatial
 - Geocoded locations of POI along with their NAICS codes

NAICS major code	Sector name
Sector 31-33	Manufacturing
Sector 44-45	Retail Trade
Sector 52	Finance and Insurance
Sector 54	Professional, Scientific, and Technical Services
Sector 61	Educational Services
Sector 62	Health Care and Social Assistance
Sector 71	Arts, Entertainment, and Recreation
Sector 72	Accommodation and Food Services
Sector 81	Other Services (except Public Administration)
Sector 92	Public Administration

- 2016 Canadian Census data
 - Number of private dwellings in each Dissemination Area
- 2016 Transportation Tomorrow Survey (TTS) data
 - Large-scale household travel survey in the Greater Toronto and Hamilton Area
 - Provided a sample of 1264 ride-hailing trips in the City with seven categories of reported trip purposes
 - Used for validating the performance of the inference model

Contextual variables used

Trip attributes			
Start time	Morning (06:01-10:00) Midday (10:01-15:00) Afternoon (15:01-20:00) Evening (20:01-24:00) Overnight (00:01-06:00)		
Trip day	Weekday Weekend		
Season	Fall Summer		
Trip distance	Euclidean distance (in km) between origin and destination of a trip		

Contextual variables used

Land use attributes				
NAICS Major Industry Category	Number of different types of business establishments per unit sq. km of trip origin & destination DA			
Occupied private dwellings	Number of private dwellings per unit sq. km of trip origin & destination DA			

Trip purpose inference model estimation results

	Multinomial Logit	Nested Logit	Mixed Logit
LL-final	-7525.07	-7505.42	-7430.71
# of parameters	65	66	77
R-squared-bar	0.4158	0.4172	0.4221
AIC	15180.14	15142.84	15015.42
BIC	15290.94	15255.34	15146.67

Model estimation results: Land use variables

Private dwellings in destination DA
Manufacturing POIs in origin DA
Educational POIs in origin DA

Retail trade POIs

• Accommodation and Food Services POIs

Manufacturing POIs in destination DA
Finance & insurance POIs
Professional, scientific, & technical POIs

• Public administration POIs

• Educational POIs

Private dwellings density in origin DA

• Health Care and Social Assistance POIs

• Arts, Entertainment, and Recreation POIs

Finance and Insurance POIsOther Services POIs

€ ₽

Private dwellings density

Model estimation results: Trip start times

 Separate coefficients estimated for each time period to capture their specific effects on trip purpose

Morning trips are destined for some out-of-home activity location

Trips starting later in the day have lower probability of being work trip, and higher probability of being discretionary trip

Model estimation results: Day & Season

Weekday coefficients

- +ve for work
- -ve for worship

Fall season coefficients

- +ve for education
- -ve for recreation and social visits

Inferring Ride-hailing Trip Purposes

- Estimated models applied to 20% of all ride-hailing trip trajectories within
 September and December
 2016 augmented with land use information
- Generated the most probable purpose distributions for the 1,390,527 ride-hailing trips

Validation

- Inferred weekday trip purposes are validated against TTS data
- Discretionary purposes are merged to make categories compatible

Validation

- Results are quite encouraging, given that
 - Trips in the estimation data have somewhat different spatial and temporal characteristics than the ride-hailing trip records

Validation

- Results are quite encouraging, given that
 - The study area has mixed-use land parcels, which has always been as a major challenge for trip purpose imputation

Purpose inference by Random Forest Classifier

Enhanced Points of Interest data

Random Forest Classifier

- An ensemble learning approach
- Predictions made based on votes from multiple decision tree structures
 - Random sampling of training data points when building trees
 - Random subsets of features considered when splitting nodes
- Less prone to errors in prediction due to overfitting compared to individual decision trees

Random Forest Classifier

Training the Random Forest model

- Model was trained and tested for aggregated purposes
 - During training, 500 trees were grown for each forest with up to 7 input variables tried at each split
- The purpose categories with smaller shares have high prediction errors

Comparing Predictions of Econometric models and Random Forest Classifier

14

Characteristics of ride-hailing trip purposes

- Weekday vs weekend ridehailing trips
- More 'return home' and 'shopping and others' trips are made by ride-hailing over the weekends

Characteristics of ride-hailing trip purposes

- Proportion of trip purposes for different travel modes
- Strong modal competition between taxi and ridehailing
- 'Work' and 'education' constitute higher percentage of total ridehailing trips than taxi

Limitations and Future Research

- Assumption: ride-hailing trips have the same conditional probability as the trips in the survey data.
 - What happens if ride-hailing is used to access transit?
- Improve prediction accuracy using social network check-in data, Google Places API, hours of operation of POI etc.

Key Findings & Conclusions

- Most probable trip purpose distribution inferred from ride-hailing trajectory data using limited context-specific variables
- Land use characteristics and trip start times are good contextual variables
- Ride-hailing is mostly used for discretionary activities and for returning home; it also plays an important role in daily commuter travel
- Efficient policies should be mandated to support the benefits of ridehailing, but not at the expense of increased congestion and reduced transit ridership

Thank You

sanjana.hossain@mail.utoronto.ca