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EXECUTIVE SUMMARY 
 
Urban regions within Latin America face enormous challenges in terms of the provision of 
transportation infrastructure and services to meet the travel needs of their growing population in 
a cost-effective, equitable and sustainable manner. High quality, comprehensive information 
concerning travel behaviour and transportation system performance is a fundamental prerequisite 
for successful urban transportation planning and decision-making to address these pressing, first-
order needs. In recognition of this need, CAF established the Urban Mobility Observatory 
(OMU, Observatorio de Movilidad Urbana) to assemble and utilize standardized transportation-
related data for Latin American cities. As one component of CAF’s strategy for promoting its 
urban sustainable mobility objectives, it has partnered with the University of Toronto 
Transportation Research Institute (UTTRI) to create the iCity-South research program to develop 
and apply advanced urban informatics vision and capabilities in Latin American cities. 
 
This report presents the results of one iCity-South project. The objective of this project is to 
investigate traditional and new data collection methods in Montevideo, Uruguay for use in travel 
demand analysis and modelling. This report is the sixth and final in a series of reports 
documenting the project’s results. This report has three main purposes. First, it summarizes the 
work and findings of the project that have been presented in the previous five project reports. 
Second, it presents in the results from the final analysis of Antel cellphone trace and Intendencia 
de Montevideo public transit smartcard transaction data that represents the culmination of the 
project’s work and which has not been previously reported. The products of this work are, first, a 
new dataset of detailed trips by origin, destination, purpose and mode generated by fusing data 
together from the individual datasets, and, second, the data fusion procedure, which can be 
applied to future data to similarly generate detailed representations of travel behaviour within the 
Montevideo region. 
 
Third, and finally, the report discusses possible next steps that could build on this study’s results 
to develop and implement an agent-based microsimulation travel demand model for Montevideo 
using the full range of data that have been examined in this study. 
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CHAPTER 1 

STUDY PURPOSE & MOTIVATION 
 

Urban regions within Latin America (and elsewhere) face enormous challenges in terms of the 
provision of transportation infrastructure and services to meet the travel needs of their growing 
population in a cost-effective, equitable and sustainable manner. High quality, comprehensive 
information concerning travel behaviour and transportation system performance is a fundamental 
prerequisite for successful urban transportation planning and decision-making to address these 
pressing, first-order needs. 
 
In recognition of this need, CAF established the Urban Mobility Observatory (OMU, 
Observatorio de Movilidad Urbana)1 to assemble and utilize standardized transportation-related 
data for Latin American cities. 29 cities are currently members of OMU. Collecting consistent, 
time-series data for these cities, however, is a difficult and costly task for CAF and its partner 
cities. 
 
At the same time, exciting, new transportation data collection sources are emerging to 
complement or even replace the traditional methods used to collect the OMU data. These 
include: 

• The pervasive penetration of cellphone and smartphone technology within urban 
populations. 

• The widespread adoption of smartcard systems by public transit agencies in many cities. 
• Extensive deployment of many types of sensors (video, thermal, Bluetooth, etc.) for 

monitoring travel flows. 
• Increasing availability of very large (typically crowd-sourced) datasets collected in a 

variety of ways by private sector companies (Google, Waze, Inrix, etc.) that can provide 
travel information. 

• Web-based survey methods to complement/replace traditional survey methods such as 
home-interviews, telephone interviews, etc. 

 
In 2015, the University of Toronto Transportation Research Institute (UTTRI) launched the iCity 
research program, which is dedicated to applying modern urban informatics (the combination of 
data collection, data science, modelling, visualization and high-performance computing methods) 
to the promotion of sustainable metropolitan growth. As one component of CAF’s strategy for 
promoting its urban sustainable mobility objectives, it has partnered with UTTRI to create the 
iCity-South research program to apply the iCity urban informatics vision and capabilities in Latin 
American cities. 
 
Two initial projects were chosen to launch the iCity-South research program. One involved the 
demonstration of agent-based microsimulation methods for modelling urban travel demand in 
terms of developing a prototype microsimulation model for Asunción, Paraguay.2 The second is 
the focus of this report. The objective of this project tis to investigate traditional and new data 

                                                 
1 https://www.caf.com/es/temas/o/observatorio-de-movilidad-urbana/ 
2 This project was completed in April, 2017.  See Miller, et al., (2017a,b) for the results of this project. 
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collection methods in Montevideo, Uruguay. This report is the sixth and final in a series of 
reports documenting the Montevideo project results. 
 
This report has three main purposes. First, it summarizes in Chapter 2 the overall work and 
findings of the project, most of which have been presented in the previous five project reports. 
 
Second, it presents in the results from the final analysis of Antel cellphone trace and Intendencia 
de Montevideo public transit smartcard transaction data that represents the culmination of the 
project’s work and which has not been previously reported. Chapter 3 describes the data used in 
the analysis. Chapter 4 presents the methods used in the analysis, while Chapter 5 discusses the 
analysis results. 
 

Third, and finally, Chapter 6 discusses possible next steps that could build on this study’s results 
to develop and implement an agent-based microsimulation travel demand model for Montevideo 
using the full range of data that have been examined in this study. 
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CHAPTER 2 

SUMMARY OF PREVIOUS WORK & FINDINGS 
 
 

2.1 INTRODUCTION 
 
The starting point for this project was a comprehensive review of the current state of the art of 
urban travel demand data collection methods (Project Report 1, Miller & Habib, 2017). Key 
findings of this review include:3 

• The field is currently in a significantly dynamic state, in which the data requirements to 
support urban transportation planning and modelling are changing in response to 
increasingly complex issues and correspondingly challenging analysis needs. 

• Traditional methods of data collection – principally various forms of home interview 
surveys – are increasingly expensive and difficult to undertake, for a variety of reasons. 

• At the same time, new Information Technology (IT) based data sources and data 
collection methods provide promise of supplementing, or even replacing, traditional data 
collection methods with new data sources that may be more comprehensive, cost-
effective and applicable to current planning issues than traditional survey methods. 

• It is very unlikely that any one data collection method will be able to address all planning 
analysis and modelling needs. Each method possesses strengths and weaknesses that 
make it better suited to some applications than others. 

• Further, most new, IT-based datasets, such as cellphone traces, transit smartcard 
transactions, etc., while providing massive amounts of information (so-called “big data”) 
concerning trips, generally lack any information concerning characteristics of the trip-
makers (age, gender, income, etc.). They also typically lack information concerning key 
trip attributes, such as trip purpose and mode. 

• Given the previous two points, a multi-instrument approach to data collection design is 
required, in which multiple data collection methods (or sources of data) are jointly used 
in a coordinated data collection program. This data collection program should be 
explicitly designed to maximize the usefulness of each source of data and to combine the 
various datasets so as to provide as comprehensive an overall dataset as possible – one in 
which the “whole is more than the sum of its parts”. 

• To build this comprehensive dataset from its individual parts requires the use of advanced 
data fusion methods, such as machine learning methods, to generate statistically reliable, 
robust datasets. 

  
These travel data collection issues are particularly challenging in the Latin American context, 
given: 

• The heterogeneity in socio-economic and living conditions existing in many urban 
regions. 

• The presence of informal and/or privatized transit services in many cities 
• City-to-city and country-to-country differences in government structures and capacities. 

                                                 
3 See also, Miller, et al. (2012). 
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At the same time, however, many Latin American cities are aggressively pursuing new IT 
technologies, such as public transit smartcards, which offer the potential to support the sort of 
new, multi-frame, comprehensive data collection program envisioned above. Montevideo, in 
particular, is very well positioned to be a leader in this regard, for several reasons: 

• With a metropolitan regional population of 1.9 million persons, it is “large enough” to 
present interesting challenges with respect to data collection and transportation planning 
analysis, but it is also not so large that these challenges might overwhelm the developing 
and testing of new methods. 

• Montevideo is a well-governed urban region with a progressive approach to 
transportation planning. 

• Montevideo is blessed with several very good sources of travel-related data to support the 
development and testing of new methods. 

 
In particular, three major sources of travel-related data are available in Montevideo: 

• A recent (2016) traditional home-interview travel survey (the Montevideo Home 
Mobility Survey – MHMS). 

• A very comprehensive and high quality database of public transit usage, including both 
smartcard and cash-fare transactions. 

• Cellphone trace data, generously made available to the project by Antel, the largest 
cellphone provider in Montevideo. 

 
Given this rich data environment, Montevideo has provided an excellent case study region to 
investigate the questions raised above concerning the usefulness of new data sets and how they 
might best be utilized in Latin American planning and modelling applications. To do so, this 
project proceeded in two stages. The first stage involved analysing each of the three data sets 
listed above (MHMS survey data; transit transaction data; Antel cellphone traces) independently 
to access their strengths and weaknesses. The results of these analyses are presented in detail in 
Reports 2-5 of this project’s report series and are also briefly summarized in Sections 2.2, 2.3 
and 2.4, respectively, below. 
 
The second, and final, stage in the project involved bringing the three datasets together through a 
data fusion process to create a more holistic and comprehensive dataset characterizing travel 
behaviour in the Montevideo urban region. In particular, this work involves using MHMS and 
transit transaction data to impute trip purposes and travel modes for trips observed as Antel 
cellphone traces. As part of this analysis process, trip purposes for the transit transaction data are 
also imputed. The final product of this analysis is a much richer and comprehensive “snapshot” 
of travel behaviour in the region than that which can be provided by any one of the datasets 
individually. As discussed further in Chapter 6, it is hoped that this new, fused dataset will be of 
on-going use to Montevideo for a variety of transportation planning purposes, including, 
possibly, the development of a comprehensive model of travel within the region. 
 
Chapters 3, 4 and 5 document this second stage work, which has not been previously reported 
within this project. Chapter 3 provides an overview of the datasets used in the analysis. Chapter 4 
describes the analysis methods used. Finally, Chapter 5 presents the results obtained. 
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2.2 2016 MONTEVIDEO HOME MOBILITY SURVEY (MHMS) 
 
The 2016 Montevideo Home Mobility Survey (MHMS) was designed and executed by the 
municipal governments of the Metropolitan Area of Montevideo (AMM) and the Universidad de 
la República (Udelar) under funding from CAF. It is a classic home interview survey in which 
trained interviewers survey randomly selected households in their homes. The survey was 
conducted during the period of August-October 2016. The survey study area consisted of the 
entire AMM. In total, 2,230 households and 5,946 persons within these households were 
interviewed, representing a 0.34% sample of the approximately 656,000 households (1,807,000 
persons) within the survey study area (based on 2011 Census data). The survey and key results 
are extensively documented in the July, 2017 report, Encuesta de movilidad en el Área 
Metropolitana de Montevideo 2016, Principales resultados e indicadores.   
 
The UTTRI iCity-South project team reviewed the draft design of the survey questionnaire in 
December, 2015. We found the MHMS to be a very well-designed survey, but we were also able 
to provide some suggestions to the MHMS design team concerning possible minor changes in the 
wording of several questions, as well as the general layout of the questionnaire. The iCity-South 
team also had an opportunity to further discuss the survey design with the MHMS design team 
while it was in pilot testing during our first project visit to Montevideo in early June, 2016. These 
discussions confirmed the quality of the survey design and care with which the survey was being 
implemented in the field. 
 
Once the survey had been completed and the cleaned dataset was available for analysis, the iCity-
South team reviewed the survey data with respect to: 

• Definition of traffic zones. 
• The spatial distribution of the respondents. 
• The socio-economic representativeness of the sample. 
• The trip attributes collected. 
• Implications of the sample size/rate for travel behaviour analysis and modelling. 

 
The analysis and findings of this review are documented in Report 2 of the project report series 
(Miller, et al., 2017c). In general, it was found that the spatial distribution of respondents, the 
socio-economic representativeness of the sample and the trip attributes collected were all 
satisfactory, confirming the overall quality of the survey and the usefulness and representativeness 
of the survey data for travel analysis purposes. 
 
The only weakness identified in the survey stems from its small sample size (0.34%), which means 
that origin-destination (O-D) trip matrices can only be reliably constructed using a very aggregate 
traffic zone system which is too gross for detailed travel demand modelling purposes. Thus, while 
the disaggregate trip records are individually valid and useful, they should ideally be augmented 
by larger-sample data that would permit more spatially (and temporally) detailed O-D travel 
patterns to be constructed to support more detailed travel demand model development. 
 
Given this key finding, a primary purpose of the work reported in this document is to explore how 
the MHMS data can be best combined with such other larger travel-related datasets to address this 
need. 
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2.3 ANALYSIS OF PUBLIC TRANSIT TRANSACTION DATA 
 
A major task in this project was the detailed analysis of Montevideo public transit transaction 
data. Montevideo has an excellent database to support this analysis, which consists of every 
smartcard transaction, plus an electronic recording of every cash transaction as well. Hence 
essentially a 100% record of every transit boarding is available. 
 
The transaction data is a “tap-on” system, in which every boarding is recorded, but no alighting 
information is recorded. Thus, a major task involved in translating these transaction data into trip 
data is to impute the destination for each trip. For smartcard transactions, the “tap-on” location 
for subsequent trips for a card-holder for a given day can be used to impute the alighting location 
for previous trips, while the tap-on location of the first trip of the day can generally be used to 
impute the alighting location of the last trip of the day. Transfers can also be tracked for 
smartcard users, since the tap-on for the second (and subsequent) transit line used in a given trip 
is also observed. Multi-day/week data significantly enhance the statistical reliability and 
usefulness of the data. 
 
Non-smartcard boardings are also recorded, but transfers and trip sequences for trip-makers 
paying by cash cannot be directly imputed. These boardings, however, are still useful to provide 
information concerning total daily transit usage by line and boarding location. 
 
The Intendencia de Montevideo provided a one-week sample of data for Montevideo’s integrated 
public transit system STM (Sistema de Transporte Metropolitano), composed of buses from 4 
different operators that serve the City of Montevideo and surrounding areas (Coetc, Comesa, 
Cutcsa, Ucot). This system has 144 bus lines with 107 different destinations, and 4,835 stops.4 
The data consists of 4 main components: 

1. Boarding records: 7 consecutive days of passenger boarding records, including the five 
weekdays and a weekend from August 15th to August 21st, 2016. These records belong to 
smartcard (STM card) and no-card passengers recorded by the system.  

2. Lines and branches: Information about bus routes including the direction and order of 
stops. Each bus run or trajectory in one direction, is labeled with a unique identification 
number that can be paired with this data to obtain the run’s line and branch.  

3. Stops: Number, coordinates, and description of the closest intersection from the stop.  
4. Automatic Vehicle Location (AVL): Position and speed of 295 bus runs without 

timestamps. 

The passenger boarding records correspond to smartcard and non-smartcard users during a 
complete week (Monday-Sunday). The total boarding records for smartcards are 5,077,674 and 
for no cards 2,371,815, representing a 68% to 32% split. 
 
The analysis of these data was undertaken in two phases: a preliminary analysis (documented in 
Project Report 3, Parada and Miller (2017) and a second, more detailed analysis, documented in 
Project Report 5 (Parada and Miller, 2018). More detailed results are also available in Parada’s 
MASc thesis (Parada, 2018). Key issues investigated include: 

                                                 
4 http://www.montevideo.gub.uy/transito-y-transporte/stm-sistema-de-transporte-metropolitano/el-sistema 
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• Descriptive analysis of smartcard trips and non-smartcard trips to identify similarities and 
differences between the two user groups. 

• Detailed analysis of transit users’ travel patterns. 
• Application of a method to estimate trip alighting locations for smartcard users. 
• Estimation of trip origins and destinations (zone-based) from stop boarding and alighting 

locations within the transaction data. 
 
Overall, this analysis clearly demonstrated the usefulness of transit transaction data (especially 
smartcard data) for characterizing transit travel behaviour in Montevideo (and, by extension, 
elsewhere). In particular, although considerable analysis is required, it is possible to impute 
robust estimates of transit trip origin-destination (O-D) travel from transit stop-based transaction 
data for a very large percentage of trips. 
 
Subsequent to this analysis, the Intendencia de Montevideo has developed their own transaction 
data processing methods to generate transit O-D trips by time of day. The new transaction data 
described in Chapter 3 that are used in the data fusion exercise described in Chapters 4 and 5 are 
based on the Intendencia’s methods. 
 

2.4 PRELIMINARY ANALYSIS OF ANTEL CELLPHONE TRACE DATA 
 
As a first step in the investigation of the use of cellphone trace data for travel demand analysis 
purposes, a one-day sample of cellphone traces by 5,000 Antel customers was obtained from 
Antel. The trace data were aggregated in 15-minute time intervals and a 74-zone system for the 
Montevideo region, resulting in a dataset of approximately 480,000 data records to process. 
 
Project Report 4 (Faghih-Imani and Miller, 2018) presents the results of this analysis, which 
include: 

• A literature review of usage to date of cellphone trace data, as well as the 
analysis/modelling methods used 

• Cellular trace data clearly possess potential for describing trip-making in an urban region. 
• BUT: 

o Finer temporal and spatial resolution are both required for the trace data to be 
truly useful. 5-minute, rather than 15-minute time intervals are required, as is a 
finer zone system if trips are to be characterized in both time and space at a level 
of disaggregation that is suitable for useful travel demand modelling. 

o Multiple days/weeks of observations for individual trip-makers is required for 
statistically robust estimations of their travel behaviour. 

o A much larger sample of cellphone users is required to generate statistically 
robust representations of travel by origin, destination and time of day. A key 
strength of cellphone trace data is the potentially very large size of the dataset. 
Exploiting the strength of such “big data” is essential in order to maximize its 
usefulness. 
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CHAPTER 3 

DESCRIPTION OF DATA 
 
 

3.1 INTRODUCTION 
 
This chapter provides overall descriptions of the various data used in the data fusion exercise 
undertaken in this study. These consist of: 

• A very large sample of Antel cellphone traces, consisting of 40% of all such traces for the 
time period May 2-29, 2018. 

• All public transit fare transaction records for the same time period, provided by the 
Intendencia de Montevideo. 

• 2016 MHMS records. 
• Road and transit network data, as well as other ancillary datasets used in the analysis. 

 
Sections 3.2 – 3.5 present descriptions of each of these datasets, respectively. 
 

3.2 ANTEL DATA 
 
Antel, the primary cellular telecommunications company in Montevideo, provided four weeks of 
cellphone traces for analysis in this project, consisting of a random sample of 40% of mobile 
phones using their service within Montevideo and the surrounding metropolitan area. The data 
are for the time period May 2nd to May 29th, 2018. Overall, the dataset includes more than 
117,862,000 cellphone traces for about 948,600 unique cellphones. 
 
These cellphone traces were preprocessed from raw data by Antel to eliminate as much noise in 
the data as possible and to preserve user anonymity. The trace data are temporally reported in 
minutes, thereby providing excellent temporal precision. They are also spatially aggregated to 
135 zones in the Montevideo region (see Figure 3.1). The average area of the zones in the study 
area is about 37.1 km2

, with the smallest zone having an area of 0.38 km2 and the largest zone 
about 1,020 km2. 
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Figure 3.1: Antel Data Zone System 

 
In order to do a preliminary analysis of the data and to identify the potential of the data for travel 
analysis, an assumption is made that any time a cellphone user stays more than 30 minutes in a 
zone is due to participation in an activity at that location. With this assumption, 32,417,002 
activities are estimated for the four weeks of data. Further, trips are defined when a user moves 
between two activities with first activity location identified as the trip origin and the second 
activity location as the trip destination. More than 14 million of trips are estimated in the 
Montevideo region within the dataset. The average estimated daily trip rate per person is 1.99, 
with a minimum of 1 and maximum of 13.54. This daily trip rate is slightly lower than that 
observed in the 2016 MHMS of 2.11 (see Section 3.4, below). 
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Figure 3.2: Hourly Trips by Day 

 
Figure 3.2 presents the hourly trips in the Montevideo region for each day in the sample. Figure 
3 also presents the hourly trips for a typical weekday and weekend day. These two figures clearly 
show that the temporal pattern of trip-making in Montevideo can be identified using cellphone 
location data. 

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Day

Trips

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

16 17 18 19 20 21 22 23 24 25 26 27 28 29

Day

Trips



iCity-South: Final Project Final Report  14 
 

 
Figure 1 Hourly trips for a typical weekday or weekend 

Figure 3.3: Average Hourly Trips within the Sample, Weekdays & Weekends 

 
Each identified trip has its own start and end time and an origin and destination based on the 
detected activities which are connected by the trip. Thus, it is possible to create Origin-
Destination (O-D) matrices for each time period by accumulating the trips by time period. 
Figures 3.4 to 3.7 depict the average number of weekday trips generated by origin and 
destination, aggregated to four periods in a day. Based on trip start time, the four time periods 
are: AM (6:00-9:00), Midday (9:00-15:00), PM (15:00-19:00), and Evening (19:00-24:00). Note 
that these maps display the total number of trip origins or destinations for a given zone during 
the given time period, not an hourly average. Again, these maps demonstrate that the spatial 
pattern of trips within Montevideo can be obtained by processing cellphone location traces at a 
level of spatial detail (i.e., traffic zones), which is useful for transportation planning and 
modelling purposes. 
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Figure 3.2: Trip Origins and Destinations, Weekday AM Peak Period 
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Figure 3.5: Trip Origins and Destinations, Weekday Mid-Day Period 
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Figure 3.6: Trip Origins and Destinations, Weekday PM Peak Period 



iCity-South: Final Project Final Report  18 
 

 
Figure 3.7: Trip Origins and Destinations, Weekday Evening Period 
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Figures 3.8 and 3.9 compare Antel cellphone trace and MHMS trip start and end times, 
respectively, by time of day. As can be seen, the cellphone distributions generally compare well 
with the survey data, except in the morning peak period, where relatively fewer trips are 
observed in the cellphone trace data. The reason for this discrepancy is not clear and requires 
further investigation. It may reflect the greater number of mid-day trips observed in the 
cellphone data, which is an expected result, since it is likely that non-home-based, mid-day trips 
are under-reported in the survey. It may also reflect loss of short trips due deletion of intra-zonal 
trips in the analysis, which possibly particularly occur during the morning peak period.  
 

 
Figure 3.8: Cellphone vs. MHMS Trip Start Times 

 
Figure 3.9: Cellphone vs. MHMS Trip End Times 
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3.3 PUBLIC TRANSIT FARE TRANSACTION DATA 
 
All fare transaction data for the Montevideo transit system were provided by the Intendencia de 
Montevideo for the same May 2-29, 2018 time period as for the provided Antel data. These 
consisted of: 29,868,716 recorded transactions, 82.5% of which were made by smartcards from 
734,569 unique smartcards. For the smartcard records, the Intendencia used their in-house 
procedure for identifying trip alighting stops. Their algorithm successfully identified 62% of 
these alighting locations, which were attached to the transaction records. Unique (but 
anonymized) identifiers were attached to smartcard records for each smartcard so that the trip-
making behaviour of the smartcard owner could be tracked day-to-day within the observation 
period. 
 
Figure 3.10 shows the frequency distribution of the number of smartcard transactions per user 
during the sample period. On average, a smartcard was used for 33.6 transactions (SD=29.3). 
 

 
Figure 3.10: Number of Smartcard Transactions per Card, May 2-29, 2018 

 
Figure 3.11 shows the daily distribution of boardings by time of day for 28 days observed in the 
sample. Figure 3.12 overlays this distribution of transit trips with the same distribution of Antel 
cellphone trace-based trips. In general, good correspondence between the two distributions is 
observed. 
  



 
 

 
Figure 3.11: Transit Boardings by Time of Day & Day, May 2-29, 2018 

 
Figure 3.12: Comparison of Transit Boardings & Cellphone Trips by Time of Day & Day   



 
 

 

 
Figure 3.13: Smartcard User Home Locations 

 

 
Figure 3.14: Smartcard User Work Locations 

 
Home and work5 locations were identified for smartcard owners making multiple trips during the 
sample period. Home locations were assumed to be identified if the same (stop) location was the 
first tap-on point of the day for at least 3 days during the month. Similarly a (stop) location was 

                                                 
5 Or, possibly, a school location. More precisely, these locations should be considered as a non-home location that is 
visited on a systematically recurring basis during the observation period. 
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assumed to be the trip-maker’s work location if it was observed to be the same last tap-on of the 
day for at least 3 days during the month. Using these rules, 75.9% of the smartcard users were 
assigned a home location, while 64.9% were assigned a work location. Figures 3.13 and 3.14 
map the identified home and work locations for the smartcard users, which generally correspond 
well with census data. 
 
Given these home and work definitions, trips by time of day to/from home and work for 
weekday trip-makers were identified in the smartcard data, as summarized in Figures 3.15 and 
3.16. 
 

 
Figure 3.15: Smartcard Weekday Trips to/from Home by Time of Day 

  
Figure 3.16: Smartcard Weekday Trips to/from Work by Time of Day 
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3.4 2016 MHMS DATA 
 
The MHMS data has already been discussed in Section 2.2. The data were collected during the 
period of August-October 2016 in the Metropolitan Area of Montevideo. The size of this survey 
represents a 0.34% sample of the households in the region, with 2,230 households interviewed. 
These households consist of 5,946 individuals and reported 12,546 trips which results in a trip 
rate of 2.11. The average age of individuals in the survey is 38.8 years; 53.1% of them are 
female. The MHMS data is spatially aggregated to census segments. Census segments are groups 
of blocks (usually between 6 to 12 blocks) that are the spatial units used by the 2011 Uruguayan 
census. There are about 1,720 census segments in the Montevideo region with an average area of 
2.91 km2. Figure 3.17 shows the census segments in the Montevideo region. The mode share of 
the reported trips in MHMS dataset is presented in Table 3.1. Walking has the largest mode 
share, that over a third of the trips recorded are short. Combining drives and passengers, cars 
account for 29.2% of trips, while the bus system carries about 25.2% of the trips. 
 

 
Figure 3.17: Census Segments in the Montevideo Region 
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Table 3.1: Mode Share of Trips in MHMS Dataset 

Travel Mode Mode Share in % Number of Trips 

Walk 34.0 4265 

Bike 3.5 439 

Auto Passenger 10.0 1251 

Auto Driver 19.2 2410 

Motorcycle 6.1 769 

Bus 25.2 3166 

Other 2.0 246 

 

3.5 NETWORK DATA 
 
Figure 3.18 presents the representation of the Montevideo road network in the Montevideo that is 
used in this study. It is obtained from the OpenStreetMap database. Further, the data regarding the 
public bus system including routes, stops and frequencies are gathered from the open data portal 
of Montevideo government. The bus network is presented in Figure 3.19. These two transportation 
networks are used in our traffic assignment model using EMME software to estimate link travel 
times, volumes and congestion in the network, along with O-D travel times and costs. 
 

 
Figure 3.18: Montevideo Road Network 
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Figure 3:19: Montevideo Bus Network 

3.6 OTHER DATA 
 
The latest census in Montevideo region was conducted in 2011. Data of interest to this study 
include the number of persons and households in each zone. Socio-demographic information 
such as population age and gender distributions in the region is also available. In our analysis, 
the census data is used to validate our estimation of home locations of cellphone users in our 
sampled data, based on the Antel cellphone traces.  
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CHAPTER 4 

ANALYSIS OF CELLPHONE TRACES: METHODS 
 
 

4.1 INTRODUCTION 
 
As demonstrated in both the preliminary analysis of a small subset of Antel data (Section 2.4) 
and the analysis of the large May, 2018 dataset (Section 3.2), cellphone trace data can be used to 
generate robust origin-destination (O-D) trip matrices by traffic zone by time of day that are 
sufficiently precise for travel demand modelling and other transportation planning analyses. 
They lack, however, two key trip attributes that are required if these data are to be used for 
modelling purposes: trip mode and trip purpose. 
 
The objectives of the analysis undertaken in this study are to impute for the Antel cellphone trace 
data: 

1. Home and work locations for trip-makers. 
2. Travel mode (auto, transit, etc.) using the 2016 MHMS data, which contains mode choice 

attributes for each observed trip. 
 
Section 4.2 describes the methods used to impute home and work locations. Section 4.3 
describes the methods used to impute trip mode. All results from the application of these 
methods to the cellphone traces are presented in Chapter 5. 
 

4.2 IMPUTING HOME & WORK LOCATIONS 
 
4.2.1 Home Locations 

A variety of criteria were tested to identify the home location of each cellphone user in the 
dataset. All depended on having multiple-day records of cellphone usage, so that usage patterns 
could be identified. The criteria tested are: 

1. The home zone is the zone with greatest total duration over the four-week observation 
period (i.e., the cellphone is located in the zone for a greater total amount of time than 
any other zone). Durations were computed for: 

a. All times during all days (total time). 
b. Weekends only. 
c. Nights only (using both 2100-0700 and 1900-0900 time periods). 

2. Count the number of times that a zone is the origin of the first trip of the day plus the 
number of times it is the destination of the last trip of the day. The zone with the highest 
count of first/last trips is defined as the home zone. For this analysis, the “day” was 
defined as starting at 0400 on one calendar day and going to 0359 the next calendar day. 

3. Count the number of times that a zone is the trip destination. The zone with highest count 
is labelled as the home zone. As with durations, this count was computed for all 
days/times, weekends only and nights only (for 2100-0700 and 1900-0900 time periods). 

 
In all cases, a minimum number of observations were required for the criterion to be applied. 
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4.2.2 Work Locations 

Similar to the logic used in identifying home locations, it was assumed that the second most-visited 
zone is very likely to be their usual place of work/school. It is not possible within the dataset to 
differentiate between work and school activities. Indeed, it is possible for a non-worker/student 
who visits a given location on a repeated, very frequent basis to be captured in this analysis. For 
simplicity of discussion, however, all locations identified in this analysis are labelled as “work”. 
 
The rule for work location identification is simply the zone which is stayed at for the longest 
duration during the day (defined as 0800-1800), with a minimum of a one-hour stay. The rule was 
tested for all seven days of the week and for weekdays (Monday to Friday) only. 
 
Cellphone users for whom no work location could be identified through this method are assumed 
to not be workers/students. 
 
4.2.3 Origin-Destination (O-D) Trip Matrices 

Given the imputation of home and work locations, all cellphone traces can be categorized by 
their origin and destination purposes of home, work and “other”. Given available data, it is not 
possible within this study to identify “other” activity types (shopping, recreation, etc.) in greater 
detail. Origin-destination (O-D) trip matrices can then be constructed (by time of day, as desired) 
for the following trip categories: 

• Home-to-work. 
• Home-to-other. 
• Work-to-home. 
• Work-to-other. 
• Other-to-home. 
• Other-to-work. 
• Other-to-other. 

 

4.3 IMPUTING TRIP MODE 
 
Figure 4.1 displays the overall approach to imputing trip mode for the cellphone traces. The first, 
key (and novel) step in this procedure is to convert MHMS O-D trips into pseudo cellphone 
traces; i.e., for each trip, convert it into a “trace” at the same level of spatial and temporal 
aggregation as the actual Antel traces. These MHMS pseudo-traces were then used as labelled 
input data to train the neural network model. 
 
In order to construct these traces, the MHMS O-D trips must first be assigned to paths (routes) 
through the road and transit networks (depending on each trip’s chosen mode). To do this, road 
and transit networks for Montevideo where constructed within the Emme network modelling 
software system, as briefly described in Section 3.5. Maximum utility paths through the road and 
transit networks were found for auto (drive, passenger, taxi, motorcycle) and public transit trips, 
respectively. Active mode traces were constructed by taking the shortest distance paths through 
the road network at an assumed speed of 4 kph. Since it was not possible to calibrate 
Montevideo-specific assignment model parameters within this study, parameters from Toronto’s 
GTAModel V4.0 were used. It is not expected that the use of the Toronto parameters 
significantly affected the results. 
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Figure 4.1: Analysis Approach 

 
Emme is used for this purpose since the study team is very familiar with this network assignment 
software. In the longer run, any similar network modelling package could be used for this 
purpose. Emme is a commercial software package, developed and marketed by Inro, a Canadian 
software and consulting firm (https://www.inrosoftware.com/). It is used by transportation 
planning agencies world-wide, including in the Greater Toronto-Hamilton Area. It is also the 
software used in the development of the Asunción prototype travel demand model system 
(Miller, et al., 2017a,b). 
 
In this model, the day is divided into five-minute segments. A trip is defined by (see Figure 4.2): 

1. Whether it is occurring during a given five-minute segment (=1) or not (=0); i.e., 
whether the person is moving during this time segment. 

2. The distance travelled during the five-minute segment. 
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The job of the neural net model is to determine that probability of each trip being made by the 
auto, transit or active modes, given the time of day, trip length (in time and distance) and 
distances travelled per time segment (approximate speed) for the trip. 
 

 
Figure 4.2: Trip Trace Representation 

 
The neural net classifier model developed in this study consisted of three hidden layers, with 400 
neurons per layer. As illustrated in Figure 4.3, each neuron receives input signals from all the 
neurons from the layer above. In the case of the top hidden layer, these are the values of the 
feature inputs (the attributes of each trace that are used to impute its mode). These signals are 
combined in a weighted score (equation 4.1), which is then transformed by an activation function  
(equation 4.2) that generates the neuron’s output signal, which is then transmitted to the next 
lower level’s neurons. 
 

 
 

Figure 4.3: Inputs & Outputs from a Single Neuron 
(Source: https://en.wikipedia.org/wiki/File:Artificial_neuron.png) 

 

  Zk  =  bk + Σi wkixi     (4.1) 
 
where for neuron k: 
xi = Output signal from upper-level neuron i 
wki = Weight attached to the signal from upper-level neuron i to lower-level neuron k 
bk = Bias term for neuron k 
Zk = Weighted input signal to neuron k 
 
  yk  =  ϕ(Zk)      (4.2) 
 
where: 
yk = Output signal from neuron k 
ϕ( ) = Activation function for neuron k 
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Weights were randomly initialized from a normal distribution. Backpropagation combined with 
stochastic gradient descent (SGD) was used to update the weights in each iteration of the training 
session. Weights are chosen to maximize a cross-entropy (effectively a log-likelihood) function 
(equation 4.3): 
 

  H(p,q)  =  - Σt Σm pt(m)log(qt(m)    (4.3) 
 
Where: 
t = Trip t 
m = Mode m (auto, transit, active) 
pt(m) = 1 of mode m is used for trip t; = 0 otherwise 
qt(m) = Predicted probability of mode m being used for trip t 
 
A linear rectifier activation function (equation 4.4) is used for the hidden layer neurons. 
 
    0 if Z <0 
  ϕ(Z)  =         (4.4) 
    Z if Z ≥ 0 
 
where Z is the weighted sum of the inputs to the neuron and ϕ(Z) is the neuron’s output signal. 
 
A softmax activation function (equation 4.5) is used for the output layer, in order to generate 
probabilities to assign to the three modes. Note that the softmax activation function is effectively 
a logit model, where Vtm, the “systematic utility” function in the logit model, is the weighted 
input from the final hidden layer for mode m. 
 

  ����� 	= 		
�	
�

∑ �	
��

       (4.5) 
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CHAPTER 5 

ANALYSIS OF CELLPHONE TRACES: RESULTS 
 
 

5.1 INTRODUCTION 
 
This chapter presents the results of the analysis of Antel cellphone traces using the methods 
described in Chapter 4. Section 5.2 presents the results of imputing home and work locations, 
while Section 5.3 presents the trip mode imputation results. 
 

5.2 HOME & WORK LOCATIONS 
 
Table 5.1 presents the results obtained using the various criteria for imputing home locations 
described in Section 4.2. The first column of the table describes the rule. The second shows the 
percentage of cellphone users for which a home zone could be imputed using the given rule. The 
third column shows the correlation of the spatial distribution of population residential locations 
imputed by the cellphone data (using the given rule) with 2011 Census data. As can be seen from 
the table the total duration spent in the zone during the weekends gives the highest correlation 
with census data. 
 
Table 5.1: Home Location Imputation Results 

Type of Algorithm 
% of users home 

identified 
Correlation with 

census home 

most stayed duration  100.0% 0.525 

most stayed duration during night time  (19 to 9) 90.0% 0.545 

most stayed duration during night time (21 to 7) 74.9% 0.555 

most stayed duration during weekends 86.4% 0.572 

most first trips originated and lasted trips destined 43.3% 0.390 

most trip destined 76.7% 0.436 

most trip destined during night time (19 to 7) 56.2% 0.488 

most trip destined during weekend 52.8% 0.497 

 
Figure 5.1 shows the distribution of residential population as imputed for the cellphone users in 
the sample. 
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Figure 5.1: Imputed Distribution of Cellphone Users Residential Locations 

 
Table 5.2 similarly presents the results obtained for imputing work locations using the two 
criteria tested, both of which give very similar results, but with the weekday-only criterion 
generating a slightly higher correlation with Census data. Figure 5.3 displays the imputed 
distribution of jobs based on the imputed cellphone work locations. 
 
Table 5.2: Work Location Imputation Results 

Type of Algorithm 
% of users 

home identified 

Correlation 

with census 

jobs 

most stayed duration during day time (8 to 18), minimum of 1 
hour stay 68% 

0.471 

most stayed duration during day time during weekdays (8 to 18), 
minimum of 1 hour stay 66% 

0.474 
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Figure 5.2: Imputed Distribution of Cellphone Users Job Locations 

 
Once home and work locations have been identified, trips to/from home and work can be 
extracted from the overall trip set. Figures 5.3 and 5.4 display cellphone trips to and from home 
by start time and arrival time, respectively, compared to MHMS trips. As with total cellphone 
trips, it is seen that the time of day correspondence is good, except for the unexplained deviation 
in morning peak period trips. 
 
Figures 5.5 and 5.6 display similar plots for trips originating and destined to work. Again, the 
distribution for work trip origins corresponds well to MHMS data, while trip arrivals at work 
appear to be low in the morning peak period. 
 
Finally, Figures 5.7 and 5.8 bring home and work places together to display the time of day 
distribution (by trip start time) for home-to-work and work-to-home trips, respectively, with 
similar findings to those discussed above. 
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Figure 5.3: Cellphone vs. MHMS Trip Start Times, Home as Origin 

 
Figure 5.4: Cellphone vs. MHMS Trip Arrival Times, Home as Destination 

  
Figure 5.5 Cellphone vs. MHMS Trip Start Times, Work as Origin 
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Figure 5.6: Cellphone vs. MHMS Trip Arrival Times, Work as Destination  

 
Figure 5.7: Cellphone vs. MHMS Home-to-Work Trip Start Times 

  
Figure 5.8: Cellphone vs. MHMS Work-to-Home Trip Start Times 
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5.3 CELLPHONE TRIP MODE 
 
5.3.1 Introduction 
Three modes were imputed for cellphone trips in this analysis: 

• Auto: Any trip made in a passenger car or equivalent (e.g., a light truck). This includes 
auto-drivers and auto passengers in private cars and taxi/Uber passengers. Note that some 
double-counting may occur in the dataset, given that some taxi/Uber drivers may also be 
included in the dataset. Their trips while carrying passengers should not be included in 
the trip count. It may be possible to identify these drivers in the dataset and delete them 
from the mode imputation analysis, but this has not been attempted in this study. 

• Public transit: Any trip using the STM bus system. 
• Active travel: Any trip all-way from origin to destination by walking or bicycle modes. 

Given the spatial precision of the cellphone data it is not possible to distinguish between 
walk and bicycle trips with any confidence. 

 
Sub-section 5.3.2 presents the results of neural network model training using MHMS pseudo-
traces. Sub-section 5.3.3 then presents the results of the applying the trained neural network to 
the full cellphone sample. 
 
5.3.2 Neural Net Training Results 
1,703 MHMS pseudo-traces were constructed. 50% (5,820 traces) were used to train the neural 
net model, while the other 50% (5,883 traces) were used to validate the trained model. 
 
An excellent fit of 98% correct predictions by the trained model on its training set was achieved. 
When the trained model was applied to the MHMS validation set a similarly excellent fit of 
86.9% was achieved, as shown in Table 5.3. 
 
Table 5.3: Neural Net Validation Using the MHMS Sample 

 
 
5.3.3 Cellphone Imputed Trip Mode Results 

Appendix I contains plots of the spatial distribution within the Montevideo region of market 
mode shares for auto, transit and active travel modes as predicted by the neural network model 
for the cellphone traces. For each mode maps are shown for total 24-hour trips, trips by time 
period and all-day cellphone trips compared to the MHMS distributions. In all cases, the spatial 
distributions are plausible, with more auto trips occurring in rural and suburban locations and 
more transit and active trips occurring in more central locations. The appendix also displays plots 
of the spatial distributions of imputed cellphone transit trips by time of day versus the 
corresponding fare transaction distributions. While differences exist, the overall patterns are 
similar. 
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Table 5.4 compares the overall predicted cellphone mode shares with MHMS mode shares. 
Overall, auto trips are being very well-predicted by the neural net model, but transit trips appear 
to be over-predicted, with a corresponding under-prediction of active trips. 
 
Table 5.4: Predicted Cellphone vs. Observed MHMS Aggregate Mode Shares 

 
 
Figure 5.9 shows predicted cellphone and observed MHMS trips by mode and distance. One can 
note in the figure that short-distance (0-3km) are over-predicted for transit and under-predicted 
for active travel relative to MHMS data. Thus, it appears that the neural net model is somewhat 
“confused” in its attempts to differentiate between transit and active modes for short distances. 
This is a not particularly surprising result, given the size of the traffic zones used in the analysis 
and the very simple set of explanatory factors being used in the current model. 
 

 
Figure 5.9: MHMS & Predicted Cellphone Trip Modes by Trip Distance 

 
Predicted auto trips by distance show a relatively similar pattern relative to MHMS data, except 
that many more very long trips occur in the cellphone data – a very reasonable result. 
 
Figure 5.10 compares cellphone and MHMS mode shares by time of day (trip start time). The 
patterns are generally similar, with the exception that the auto mode share is much higher in the 
cellphone data than MHMS for the very early hours of the morning. Given that the MHMS may 
well under-report trips during this time period, this is likely to be a reasonable result. In both 
datasets, transit mode shares are highest during the morning peak period – an expected result. 
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Figure 5.10: Observed MHMS & Predicted Cellphone Mode Shares by Trip Start Time 

 
Finally, Figure 5.11 plots the estimated number of transit trips in the cellphone data by trip start 
time along with transit boardings. In order to weight up the cellphone sample, the simple weight 
defined by equation 5.1 was uniformly applied to all cellphone records: 
 
Weight  =  1.0 / [(Sample fraction of total Antel customers * (Antel cellphone market share)] 
   =  1.0 / (0.40)*(0.53)  =  4.72    (5.1)  
 
The temporal distribution of the estimated cellphone transit trips compared to the smartcard 
boarding data is excellent. Consistent with the comparisons to MHMS data, it appears that total 
transit trips are being over-predicted somewhat. In addition to issues previously discussed 
concerning possible confusion in the neural net’s classification of transit vs. active trips, it may 
be that a more sophisticated weighting of cellphone trips is required in order to properly factor 
up the sample observations to total population trips. This is an issue for further investigation. 
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Figure 5.11: Transit Boardings & Weighted Cellphone Transit Trips by Trip Start Time 
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CHAPTER 6 

SUMMARY & POSSIBLE NEXT STEPS 
 
 

6.1 SUMMARY OF RESULTS 
 
This study has developed a novel and powerful procedure for fusing cellphone trace data with 
traditional home interview survey records to create an enhanced representation of origin-
destination trip-making by time of day, trip purpose and mode for the Montevideo region. This 
cross-sectional dataset is suitable for developing a travel demand forecasting model system for 
the Montevideo region (see Section 6.3 below). It can also support a wide variety of 
transportation policy related analyses. 
 
The procedure developed was demonstrated using May, 2018 cellphone and transit data, along 
with 2016 MHMS data. It can be used to generate similar datasets for additional periods of time 
providing that similar cellphone and transit data are available for these time periods. Thus, a 
time-series of detailed cross-sectional “snapshots” of travel behaviour can be constructed over 
time (e.g., perhaps on an annual basis). Note that this depends on the assumption that the trip 
purpose and mode relationships established based on the 2016 MHMS data hold into future time 
periods. As one moves further into the future, this assumption, of course, will become somewhat 
more difficult to maintain. Thus, a need for at least an occasional small sample update of survey 
data over time that provides information concerning trip purposes and modes may well continue. 
As discussed in the next section, however, new methods for collecting such data may become 
increasingly viable in the near future that may be able to cost-effectively address this need. 
 

6.2 POSSIBLE NEXT STEPS: DATA COLLECTION & FUSION METHODS 
 
In addition to use of the procedure developed in this study by Montevideo agencies to update 
their travel behaviour database over time, a number of possible next steps exist that CAF may 
wish to consider with respect to further development of data collection methods in Latin 
American in support of their UMO program. 
 
The first of these is to test the transferability of the Montevideo procedure to another (probably 
larger) Latin American urban region. Given the increasingly ubiquitous availability of both 
cellphone and smartcard data in many cities, it should be possible to apply the Montevideo 
procedure in any city for which such data can be obtained from both a cellular provider and the 
municipal transit authority. The availability of a recent home-interview survey (such as was the 
case in Montevideo) would be extremely advantageous, but other sources of supplementary data 
to update and test the procedure in the new urban region could be investigated as well. If the 
procedure could be tested and validated in at least one other urban region (or, preferably, a small 
handful of cities of different sizes, etc.) then the potential for developing a “universal” procedure 
is presumably very high. 
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Second, as noted in Chapter 4, data and time limitations within this study meant that it was 
unable to undertake the following three additional data imputation tasks: 

1. Impute trip-maker socio-economic attributes (age, income), etc. for persons in either the 
cellphone or the transit transaction datasets. 

2. Differentiate between work and school trips in the two datasets. 
3. Estimate types of NWS trips (shopping, recreation, etc.) 

 
Ideally, all three tasks are desirable in order to convert the fused trip dataset into a maximally 
useful database for activity-based travel model development. With more time and access to more 
detailed GPS-based “Point of Interest” (POI) data, all three should be doable. In particular, 
imputing person and household attributes given identified home zones in the Antel dataset,6 
combined with MHMS and census data is a feasible task to undertake. More detailed estimation 
of trip purposes (activity types) requires probabilistically assigning purposes based the land uses 
/ building types in observed destination zones. This is not yet a well-developed process and is 
likely to be subject to a fair bit of modelling error. Nevertheless, this is a topic worth further 
investigation. One promising approach may be to redefine trip/activity purposes explicitly in 
terms of land use, rather than activity type per se. For example, in this approach a trip purpose 
might be “go to a shopping mall”, rather than “shopping”, “social” (“meet friends for lunch at the 
mall”), etc. 
 
Third, this study has focussed on the use of cellphone and smartcard data as alternative data 
sources relative to traditional home-interview surveys. Two other promising data collection 
technologies, however, also exist: smartphone travel data collection apps, and web-based survey 
methods. These were not investigated in this study for several reasons, including: 

• The much lower market penetration rates of smartphones and home computers within 
Montevideo relative to cellphones. 

• Lack of project resources to investigate these technologies in a meaningful way. 
• Although developing at a rapid rate, these technologies are not yet fully mature in terms 

of their capabilities. 
 
Nevertheless, both technologies are, indeed, advancing rapidly, and both hold significant 
promise as complements to, or even substitutes for, traditional home survey methods. As 
illustrated within this study, home interview type data – with its complete information 
concerning trip and trip-maker attributes – are still extremely valuable for augmenting cellphone 
and smartcard data. If some combination of smartphone apps and web-based surveys can provide 
similar information cost-effectively for significant sub-samples of the population, then they may 
well be valuable additions to the multi-instrument data collection design which CAF is interested 
in developing. 
 
UTTRI has been investigating both technologies extensively over the past few years, including 
extensive, systematic testing of smartphone apps, leading to detailed design recommendations 
for future app development (Harding, et al., 2016a, 2016b; Faghih-Imani, et al. 2018) and 
developing new, powerful software for multi-platform web-based surveys (Chung, et al., 2017). 

                                                 
6 Imputing attributes for trip-makers in the transit transaction data will be subject to greater modelling error, since 
their home zones are also modelled, based on their transit stop locations, thereby introducing greater uncertainty 
concerning their actual home zones. 
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Testing of both technologies in a Latin American context would appear to be well worth the 
effort in terms of the lessons that could be learned and the eventual operational applications of 
these methods. 
 

6.3 POSSIBLE NEXT STEPS: MODELLING 
 
It is important to note that the data fusion procedure developed in this study is not a forecasting 
tool. Rather, it creates an enhanced representation of current travel conditions. To forecast future 
travel for strategic planning purposes still requires the development of a formal travel demand 
forecasting model system. What the procedure developed in this study does do, however, is 
create a significantly enhanced base dataset to support the development of such a forecasting 
model system. 
 
The potential for developing an agent-based microsimulation travel demand model system for 
Montevideo similar to the SATA model developed for Asunción (Miller, et al. 2017a,b) has been 
briefly discussed in Report 2 of this project (Miller, et al., 2017c). The fused travel behaviour 
dataset developed in this project can be used directly to develop the individual behavioural 
choice models (trip generation, distribution, mode choice) within the overall model system. In 
addition, the Emme road and transit networks developed in this project to generate the MHMS 
trip pseudo traces provide an excellent starting point for developing the “operation grade” 
networks needed for an operational travel demand model system. Thus, this project, combined 
with the lessons learned during the Asunción prototype model system development, has placed 
Montevideo in an excellent position to rapidly and cost-effectively develop a state-of-the-art 
travel demand forecasting system for the region. Such a model system could play an extremely 
useful role in a wide range of strategic transportation policy analyses, including transit network 
design; transit fare policies; assessment of major transportation infrastructure investments (road 
and transit); etc. 
 
  



iCity-South: Final Project Final Report  44 
 

REFERENCES 
 
Chung, B., S. Srikukenthiran, K.M.N. Habib & E.J. Miller (2017) Development of a Web Survey Builder 
(TRAISI): Designing Household Travel Surveys for Data Accuracy and Reduced Response Burden, 
Transportation Tomorrow Survey 2.0 research report, Toronto: University of Toronto Transportation 
Research Institute, November. 
 
Encuesta de movilidad en el Área Metropolitana de Montevideo 2016, Principales resultados e 
indicadores, Montevideo: July, 2017. 
 
Faghih-Imani, A., C. Harding, M. Taws, S. Srikukenthiran, K. Nurul Habib and E.J. Miller (2018) 
Large-Scale Test of Smartphone Apps for Travel Data Collection, Transportation Tomorrow 
Survey 2.0 research report, Toronto: University of Toronto Transportation Research Institute, 
August. 
 
Faghih-Imani, A. and E.J. Miller (2018) Preliminary Analysis of Montevideo Cellular Data 
Records, Report 4: iCity-South: Urban Informatics for Sustainable Metropolitan Growth in Latin 
America, report to CAF, the Development Bank of Latin America, Toronto: University of Toronto 
Transportation Research Institute, January. 
 
Harding, C., S. Srikukenthiran, Z. Zhang, K.M.N. Habib and E.J. Miller (2016a) Smartphone App 
and Trace Processing Assessment, Volume 1, Transportation Tomorrow Survey 2.0 research 
report, Toronto: University of Toronto Transportation Research Institute, November. 
 
Harding, C., S. Srikukenthiran, Z. Zhang, K.M.N. Habib and E.J. Miller (2016b) Smartphone App 
and Trace Processing Assessment, Volume 2, Transportation Tomorrow Survey 2.0 research 
report, Toronto: University of Toronto Transportation Research Institute, November. 
 
Miller, E.J., F.F. Calderón Peralvo, J. Vaughan and B. Yusuf (2017a) SATA: Simulador de 
Actividad de Transporte de Asunción, Development of the SATA Prototype Volume I: Final Report, 
report to CAF, Toronto: University of Toronto Transportation Research Institute. 
 
Miller, E.J., F.F. Calderón Peralvo, J. Vaughan, B. Yusuf and A. Faghih-Imani (2017b) SATA: 
Simulador de Actividad de Transporte de Asunción, Development of the SATA Prototype Volume 
II: Technical Appendices, report to CAF, Toronto: University of Toronto Transportation Research 
Institute. 
 
Miller, E.J. and K.N. Habib (2017) The State of the Art in Urban Transportation Data Collection, 
Report 1: iCity-South: Urban Informatics for Sustainable Metropolitan Growth in Latin America, 
report to CAF, the Development Bank of Latin America, Toronto: University of Toronto 
Transportation Research Institute, September. 
 
Miller, E.J., K.N. Habib, M. Lee-Gosselin, C. Morency, M.J. Roorda and A.S. Shalaby (2012) 
Changing Practices in Data Collection on the Movement of People, Final Report, report to the 
Transportation Association of Canada, Île d'Orléans, Québec: Lee-Gosselin Associates Ltd. 
 
  



iCity-South: Final Project Final Report  45 
 

Miller, E.J., C. Parada Hernandez and K.M.N. Habib (2017c) Review of the Montevideo Home 
Mobility Survey, Report 2: iCity-South: Urban Informatics for Sustainable Metropolitan Growth 
in Latin America, report to CAF, the Development Bank of Latin America, Toronto: University of 
Toronto Transportation Research Institute. 
 
Parada Hernandez, C. (2018) Analysis of Automated Fare Collection Data from Montevideo , 
Uruguay for Planning Purposes, MASc thesis: Toronto: Department of Civil Engineering, 
University of Toronto. 
 
Parada Hernandez, C. and E.J. Miller (2017) Analysis of Montevideo Smartcard Data, Preliminary 
Report, Report 3: iCity-South: Urban Informatics for Sustainable Metropolitan Growth in Latin 
America, report to CAF, the Development Bank of Latin America, Toronto: University of Toronto 
Transportation Research Institute, September. 
 
Parada Hernandez, C. and E.J. Miller (2018) Analysis of Montevideo Automated Fare Collection 
Data, Final Report, Report 5: iCity-South: Urban Informatics for Sustainable Metropolitan 
Growth in Latin America, report to CAF, the Development Bank of Latin America, Toronto: 
University of Toronto Transportation Research Institute, June. 
  



iCity-South: Final Project Final Report  46 
 

APPENDIX I: CELLPHONE TRIP MODE SHARES 
 

 
Figure I.1: Weekday Auto Mode Share, All-Day by Trip Origin 
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Figure I.2: Weekday Auto Mode Share, by Time of Day & Trip Origin 



 
 

 
Figure I.3: Antel-MHMS comparison: Weekday Auto Mode Share, by Time of Day & Trip Origin 

 



 
 

 
 

 
Figure I.4: Weekday Transit Mode Share, All-Day by Trip Origin 
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Figure I.5: Weekday Transit Mode Share, by Time of Day & Trip Origin 
 



 
 

 
Figure I.3: Antel-MHMS comparison: Weekday Transit Mode Share, by Time of Day & Trip Origin 

 



 
 

 

 

 
Figure I.7: Active Travel Mode Share, All-Day by Trip Origin 
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Figure I.8: Weekday Active Travel Mode Share, by Time of Day & Trip Origin 

 



 
 

 
Figure I.3: Antel-MHMS comparison: Weekday Active Mode Share, by Time of Day & Trip Origin 

 



 
 

 

 
Figure I.10: Cellphone Transit Trips (left) vs. Smartcard Trips (right), AM Peak Period 

 
Figure I.11: Cellphone Transit Trips (left) vs. Smartcard Trips (right), Mid-Day Period 

 
Figure I.12: Cellphone Transit Trips (left) vs. Smartcard Trips (right), PM Peak Period 
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